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Abstract

Large scale scientific projects generate and use huge amounts of data. For example, the NASA
EOSDIS project is expected to  archive one petabyte per year of raw satellite data. This data is
made automatically available for processing into higher level data products and for dissemination
to the scientific community. Such large volumes of data can only be stored in robotic storage
libraries (RSLs) for near-line access.  A characteristic of RSLs is the use of a robot arm that
transfers media between a storage rack and the read/write drives, thus multiplying the capacity of
the system.

The performance of the RSLs can be a critical limiting factor of the performance of the archive
system. However, the many interacting components of an RSL make a performance analysis
difficult.  In addition, different RSL components can have widely varying performance
characteristics. This paper describes our work to develop performance models of a RSL.  We first
develop a performance model of a RSL in isolation. Next, we show how the RSL model can be
incorporated into a queuing network model. We use the models to make some example
performance studies of archive systems.

The models described in this paper, developed for the NASA EOSDIS project, are implemented
in C with a well-defined interface. The source code, accompanying documentation, and also
sample JAVA applets, are available at:

 http://www.cis.ufl.edu/~ted/

Introduction

Large scale scientific projects generate and use huge amounts of data. For example, the NASA
EOSDIS project is expected to  archive one petabyte per year of raw satellite data [KBCH94].
This data is made automatically available for processing into higher level data products and for
dissemination to the scientific community (see, for example, the reports in [ESDIS]). Automatic
management of such large data sets requires the use of tertiary storage, typically implemented
using robotic storage libraries (RSLs). In addition to EOSDIS and related projects, many
organizations and scientific disciplines make use of mass storage archives (for example high
energy physics [Lu95] and digital libraries [CoHu93]).  

                                                
1  This research was funded by a grant from NASA #10-77556
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The database community has also become interested in the use of RSLs
[DSF94,CHL93,Sequoia2k,Sa95].  This interest is motivated in part by scientific database
problems such as EOSDIS.   Another motivation for integrating RSLs with on-line database
systems is to facilitate data warehousing.

Tertiary storage is required when the managed data set becomes too large to store economically
with conventional magnetic disk devices. The point at which tertiary storage becomes necessary
is an economic tradeoff.  Currently, it seems that tertiary storage is needed to manage more than a
terabyte of data. A RSL is much slower than magnetic disk storage, and data access latencies can
run into minutes even on unloaded systems. However, RSL-resident data can be accessed
automatically. Hierarchical storage management systems, such as Unitree, Filestore, and Amass,
provide the illusion that the RSL is an extension of the file system.  Access to archived data
incurs a short delay.  The storage capacity of a data system can also be increased by using off-
line storage -- i.e. tape racks with human operators.  Access latencies with off-line storage can be
very large, ranging into hours or days, but the data storage capacity is limited only by the size of
the warehouse that one can afford to rent. Since RSL provides data volumes and access latencies
between those provided by on-line and off-line storage, it is often referred to as near-line storage.
A cost analysis of on-line, near-line, and off-line archives can be found in [KGT90].

A characteristic of RSLs is the use of removable media and a robot arm.  The removable media
(e.g. magnetic tape, optical disk, etc. are normally located in a storage rack.  To service a request
for a file, the robot arm fetches the proper media from the storage rack and delivers it to a
read/write drive.  The media is accessed in the normal way to fetch the file.  Finally, the media is
returned to the storage rack.  The capacity of RSL is the product of the capacity of the media and
the size of the storage rack. Recent magnetic tapes have a data capacity on the order of 10
Gbytes, and storage rack sizes range from 10 to 1000 media (approximately). The time to fetch
and mount the media which holds the requested file can be a large component of the access
latency.

The performance of the RSLs can be a critical limiting factor of the performance of the archive
system. Given the high data request rates expected for EOSDIS, attention to handling these
requests efficiently is critical [KBCH94,ESDIS]. However, the many interacting components of a
RSL make a performance analysis difficult.  In addition, different RSL components can have
widely varying performance characteristics.

This paper describes our work to develop performance models of tertiary storage.  We first
develop a performance model of a RSL in isolation. Next, we show how the RSL model can be
incorporated into a queuing network model. Finally, we model fork-join jobs to study the
tradeoffs of using multiple devices. We use the models to make some example performance
studies of archive systems.
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The models described in this paper, developed for the NASA EOSDIS project, are implemented
in C with a well-defined interface. The source code, accompanying documentation, and also
example JAVA applets, are available through:

http://www.cis.ufl.edu/~ted/

Previous Work

Considerable work has been done to develop performance models of mass storage.   Rahm [Rh92]
presents a simulation study of a database system with a hierarchy of storage devices.
Ramakrishnan and Emer [RE89] present a queuing model of a client/server file system.
Drakopoulos and Merges [DM92] present a closed queuing model of a client/server storage
system with hierarchical storage. Kelly, Haynes, and Ernest [KHE91] discuss a benchmark for
network storage systems. Hauser, Rivera, and Thoma [HRT91] discuss the performance of their
networked WORM server.

Some work has been done to characterize the performance of mass storage devices. Waters
[Wa74] presents a validated model of seek times in hard disk drives. More recently, Ruemmler
and Wilkes [ReWi94] present a detailed model of a modern disk drive, and discuss the difficulties
inherent in I/O modeling. Christodoulakis and Ford [CF88] and Christodoulakis [Ch87] present
analytical performance models of optical drives. Chinnaswamy [Ch92] presents performance
models of a streaming tape drive to investigate the benefit of a cache.

Models of disk arrays resemble the models presented in this paper in several aspects. Burkhard,
Claffy, and Schwarz [BCS91] present a simulation study of a disk array scheme. Lee and Katz
[LK93] and Yang, Hu and Yang [YHY94] present analytical models of disk arrays. Chen et al.
[CLGKP94] and Thomasian [Th95] present surveys of research in RAID modeling.

Several authors have modeled a RSL. Butturini [Bu88] presents the results of a simulation study
of an optical disk jukebox system. Hevner [He85] presents a model of an optical jukebox that is
used for a database application. Howard [Ho92] gives a performance model for data duplication
from an archive. Finestead and Yeager [FY92] give performance measurements of a Unitree file
server at the National Center for Supercomputer Applications.  Hull and Ranade [HR93] present
measurements of tape loading and unloading, and of data throughput, in a tape silo. Bedet et al.
[Be93] discuss the results of a detailed simulation model of the Goddard DAAC. Pentakalos,
Menasce, Halem, and Yesha [PMHY95] develop a queuing network model that incorporates a
RSL. Daigle, Kuehl, and Langford [DKL90] present a queuing model of an optical disk jukebox.
Golubchik, Muntz and Watson [GMW95] analyze tape striping on an RSL.

The analyses most closely related to the one in this paper  are [PMHY95,DKL90,GMW95]. The
analysis in [DKL90] gives a detailed model of access times to data on an optical platter.
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However, only one drive is permitted and contention for the robotic arm is not modeled. In
[PMHY95], the authors present a detailed model of a data center, incorporating RAID disk
caches and user computation. However, the authors assume that contention for the drives in the
RSL is negligible, and model the RSL as a delay server. Contention for the robotic arm due to
batch arrivals is modeled in [GMW95], but contention between jobs is not modeled.

The contribution of this work is to present a validated model of a RSL that accounts for batch
arrivals, multiple drives, contention for the robotic arm, and realistic operation.  We show how
the model can be used to make a variety of data layout and device comparison studies. Finally,
we show how to incorporate the RSL model into a queuing network model.

Model of a Robotic Storage Library

Our model of a RSL is illustrated in Figure 1. Previous studies of mass storage archive log files
(see, for example,  [Jo95a,DKL90]) indicate that requests to a mass storage device come in
batches.   This study has been corroborated by our studies of access to preliminary versions of
the EOSDIS archives (the V0 archives)  [Bedet96, DunhamNorth96]. As a result, our RSL model
uses batch  arrivals.

drives

robot

storage rack

job arrival

Figure 1

A user requests that f files be loaded into on-line storage, and these files are distributed over m
media in the RSL. The request is satisfied when every file has been loaded into on-line storage.
So, a user request consists of m jobs, each of which must be completed before the request in
finished. A RSL consists of nd drives, each of which can read or write any of the media in the
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RSL2, a storage rack containing the removable media, and a robot arm for transferring the media
between the drives and the storage rack. The model of a RSL is illustrated in Figure 1.
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Figure 2

The steps taken by a drive in retrieving files from a media is illustrated in Figure 2. When a
request arrives, its jobs are placed in the job queue. If there are jobs in the RSL queue and a drive
is idle, the drive allocates one of the jobs for execution. First, the robot arm fetches the
appropriate media from the storage area and loads it into the drive.  If the robot arm is busy
serving other drives, the drive must wait for service. After the media is brought to  the drive, it
must be mounted. For every file of interest on the media, the drive must seek to the start of the
file, spend a settling time for precise positioning and opening communications channels, and then
transfer the file to on-line storage. After  all files have been transferred, the media is rewound and
returned to the storage rack by the robot arm. However, the job is finished once all of the files
have been transferred.

In the next section, we briefly discuss our analytical performance model of a RSL system (a more
detailed discussion can be found in [Johnson96]).  In this preliminary model, we make the
following assumptions:

• Requests arrive in a Poisson process.

                                                
2    In some installations, a subset of the drives are designated as   read-only or write-only.  We will address
this complication in   a later version of the model.



534

• The distribution of the number of media per request and the number of files per
request must be specified.  In the model discussion, we assume that the number of
media per request and the number of files per request have geometric distributions.
These can be replaced by user-specified distributions (e.g. empirically determined),
but at the cost of requiring the user to specify more parameters.

• The RSL can contains one robot arm. The robot arm can access every media, and
every drive.

• Every drive can read and write every media.

• Requests (i.e., jobs) are serviced first-come-first-serve3.

• The service for a request is completed when the last file of the batch has been read
(written).

• Network or communication channel contention is not significant4.

• Service times at the drives are independent.

Analytical model

A RSL presents many difficulties for performance modeling, including batch arrivals, multiple
servers, derived parameters, and interacting components. The primary component of the RSL
model, the Mx/G/c queue, has been studied and solved in the literature [Tijms94]. Solving the
actual Mx/G/c queue is intractable, so the solution technique is to interpolate between the results
for the Mx/M/c queue and the Mx/D/c queue using the coefficient of variation of the service time
as the interpolation parameter. Because of the potential complexity of the batch arrival
distributions, we do not use explicit (i.e., generating function) formulas. Instead, we numerically
solve the recurrence equation that defines the state occupancy probabilities.  If the occupancy
probabilities of the first N states must be computed for an error bound of e, then solving the
Mx/M/c queue requires O(N2) time and solving the Mx/D/c queue requires O(N3) time.

Fortunately, we can take advantage of the nature of the problem to speed up the solution times.
The state occupancy distributions eventually converge to a geometric distribution (i.e., pN = t0 pN-

                                                
3  A simple optimization is to load files for all requests once a media has been mounted.  We assume this
situation has a negligible impact on performance in this model.
4  Potential model users indicated that communication channel contention is not a problem for their systems.
Communication contention can be incorporated into the seek times or mount times using standard techniques
[Ka92].



535

1). Therefore the recurrence equations only need to be solved up the first N0 states, and the
remainder can be computed using the t0 ratio (or perhaps the performance metrics can be
computed directly). N0 depends primarily on the distribution of the size of the batch arrival.
Fortunately, the batch arrival distribution will have a short tail -- one cannot request that more
media than exist in the storage rack be mounted, and usually only a few media are required to
satisfy a request.  By using these tricks, we implemented batch queue solvers that are fast enough
to be incorporated into a higher level model which calls them many times.

We model the RSL as an Mx/G/c queue -- that is, a queue with Poisson batch arrivals, general
service time distribution, and c servers. The parameters of a Mx/G/c queue are:

• Arrival rate

• Mean service time

• Coefficient of variation of service time

• Batch size distribution

• Number of servers

All but the service time distribution are input parameters, so our analysis is focused on how to
compute the expected service time, Ed  and the coefficient of variation cvd. To compute queue
length distributions and expected waiting times properly, we need to compute the time that a
drive is unable to serve other jobs per media that it serves.  This period includes the time to fetch
the media, mount it, seek to each file, transfer each file, rewind and eject the media, and return it
to the storage rack.  We will incorporate the time to return the media as part of the media fetch
time, so we have:

drive  service = (robot fetch)+(mount time)+(seek time)+(transfer time)+(rewind time)

Since we are interested in the response time of the last job in the batch to finish (i.e., instead of
the average job), we need to modify the response time computation. An efficient algorithm for
computing the response time of the last job in the batch is given in [Ka92]. The modified Mx/G/c
queue provides the batch response time Rbatch, the drive utilization  rd, and  pd(0),...,pd(nd-1), the
probability that 0,... , nd-1 servers are busy on a request arrival (where nd is the number of drives
in the RSL). The effective drive service time (and pd(.)) depends on the robot response time,
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which in turn depends on pd(.).  Finally, the job is finished when the last file has been transferred,
there is no need to wait for the tape rewind.  Therefore:

Rrequest = Rbatch - Erwd

For more information about the derivations in the model, please see our other report
[Johnson96].

Interfaces

The RSL solver consists of a number of modules, mostly consisting of procedures to solve
Mx/G/c queue.  Figure 3 shows a map of the procedure calls.  The functions rslsolve and
rslsolve_f are the entries to the RSL solver.

rslsolve rslsolve_f

w_mxgcg

w_mxmcg

servtime_mg

w_mxdcg

servtime_dg

<Blas>

mxgcf

p_mxmcf p_mxdcf

p_mxg1f

erlang1k_fit

w_mxgcf

w_mxdcf w_mxmcf

servtime_df servtime_mf

p_mxd1f

Figure 3

The prototype for the rslsolve function is
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void rslsolve(float l,float fr,float mr,int nd,int nr,float,Etr,
 float Vtr,float tmt,float Xb,float Esz,float Vsz,float Erwd,
 float Vrwd,float (* seekfun)(int,float*,float*),int ncust,
  float *drho, float *dR, float *dW, float* dRv, float *dWv,
  float *rrho,float *rR, float *rW,float *dmu, float *dV,
  float *basemu,float *drbusy,int DEBUG)

where the input parameters are:

• l is the arrival rate.
• fr is the average number of files per request.
• mr is the average number of media per request
• nd is the number of drives in the RSL.
• nr is the number of robot arms.
• Etr is the is the average robot fetch time.
• Vtr is the variance of the robot fetch time.
• tmt is the media mount time.
• Xb is the transfer rate.
• Esz is the average file size.
• Vsz is the variance in the file size.
• Erwd is the average tape rewind and unmount time
• Vrwd is the variance in the average tape rewind and unmount time.
• moments of the seek time, given that nfiles are loaded.
• DEBUG is set true to print a trace.

And the output parameters are:

• drho is the drive utilization        
• dR is the batch job response time
• dW is the batch job waiting time     
• dRv is the variance in job response time
• dWv is the variance in job waiting time
• rrho is the robot utilization        
• rR is the avg. robot response time
• rW is the avg robot waiting time     
• dmu is the drive service time
• dV is the variance of drive service  
• basemu is the base drive service time
• drbusy is an array where drbusy[i] is the long-term probability that I drives are busy,

0 <= I <= nd-1 (drbusy must point to the storage location for the array when the call
is made).
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The rslsolve function assumes that the number of media per request and the number of files per
media  have a geometric distribution.  In the rslsolve_f function, the user supplies the distribution
of the number of media per request, but the number of files per media has a geometric
distribution.  The prototype for the rslsolve_f function is:

void rslsolve_f(float l,float fr, int nd,int nr,float,Etr,
 float Vtr,float tmt,float Xb,float Esz,float Vsz,float Erwd,
 float Vrwd, float *bd, int bmax,
 float (* seekfun)(int,float*,float*),int ncust,
  float *drho, float *dR, float *dW, float* dRv, float *dWv,
  float *rrho,float *rR, float *rW,float *dmu, float *dV,
  float *basemu,float *drbusy,int DEBUG)

where

• bd is an array where bd[i] is the probability that a request requires I media.
• bmax is the largest number of media required to service a request.

Validation Study

We wrote a simple RSL simulator.  The simulation accepts batch arrivals, requires that a robot
unload and fetch a media before a drive can service a job, handles multiple drives, and accounts
for media rewind times. The drive service time, except for the robot arm component, is sampled
from an Erlang distribution.

We used the following values of the parameters in the validation study:

• fr = 20.

• bd[.] : Geometric distribution.

• nd = 4.

• Etr = 10.0 seconds.

• Vtr = 10.0.

• tmt = 10.0 seconds.
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• X_b = 1.0 Mbyte/sec.

We ran four sets of experiments to test the model. In the ``large files'' experiments, Esz=50,
Vsz=100, Tfs=50, and Tsl=1. In the ``small files'' experiments,  Esz=5, Vsz=10, Tfs=20, and
Tsl=2.  We tested the model with mr=2 and mr=6.

The results of the validation study are shown in Figures 4 through 7. In each case there is close
agreement between the analytical and the simulation models.  The most difficult case is when the
files are small and distributed over an average of six media, because the robot fetch times
constitute a large portion of the drive service times (about 22% of the total drive service time
when the robotic arm waiting time is added). However, the analytical model is accurate enough to
predict response times and drive utilizations.  Charts comparing analytical and simulation drive
utilizations are shown in Figures 8 and 9.

Performance Study

A performance model is useful for studying implementation alternatives. In this section, we
present two sample performance studies based on the RSL model.

Clustering

Conventional wisdom holds that striping or declustering is necessary for obtaining high transfer
rates from tertiary storage (by making use of parallel I/O). So, one should spread the files of a
typical request around as many media as possible. Conventional wisdom also holds that
swapping media is a source of great inefficiency in RSL access, so that one should try to ensure
that the files of a typical request are placed on as few media as possible.

Neither argument is convincing, unless one has a predictive performance model. We ran the
Òsmall files'' experiment with mr  ranging between 1.2 and 8. In Figure 10, we plot the response
time of a request against the number of media per request for varying arrival rates (A similar chart
can be found in an analysis of tape striping [GMW95]). For low arrival rates, setting mr to
approximately nd produces the best results. When lambda=.0001, setting mr =3 results in  a 22%
lower response time than setting mr=1.2. For high arrival rates, setting mr=2 gives lower
response times than other choices.

In Figure 11, we plot the drive utilization against mr for varying arrival rates. Increasing mr
causes a linear increase in the drive utilization. As the arrival rate increases, it becomes less likely
that all nd drives are available to service the request. So, distributing the files over a smaller
number of media reduces queuing delays. If the demand on the RSL is expected to be close to the
device's capacity, then mr should be small to increase the maximum throughput of the device.
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The question of whether to cluster or decluster the files on the media can be summarized as:

• If the expected drive utilization is low [PMHY95] and fast response is important,
then declustering can be a good strategy. However, the decrease in transfer times must
be larger than the increase in queuing delays.

 
• If high throughput is important, clustering is a good strategy.

Number of Drives

Many RSLs allow the user to install a ranging number of drives.  Adding drives to a RSL can
improve the performance of the device.  But after a threshold, adding drives does not significantly
improve performance.

We ran a sample study using the ``small files'' parameters and four media per request. In Figure
12, we plot the response time versus the arrival rate for a number of drives varying between 2
and 8. Adding a drive significantly improves performance up to four drives, but gives less benefit
after four drives. In Figure 13, we plot the drive utilization against the arrival rate.  Adding a drive
to the RSL increases the capacity of the device.  However, the robot arm will start to become a
bottleneck.  This can be seen in the non-linear increase in utilization of some of the curves, for
example for nd=8.

Computing Response Times for Particular Jobs

The rslsolve function computes the response time for an average request.  However, it is often
necessary to compute the expected response time for a particular request (with a particular
number of media to be accessed, etc.).  The servtime* routines use information computed by
rslsolve to compute response times for particular requests.  The prototype for the servtime_mf
function is:

void servtime_mf(float* bd,float bmax,float* pr,float m, int c,
  float* Eserv, float* M2serv)

where the input parameters are:

• bd - batch arrival distribution.
• bmax - largest batch arrival.
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• pr - pr[k] is the probability that k servers are busy, 0 <= k < nd
• m -service rate.
• c - number of servers.

And the output parameters are:

• Eserv - average request service time.
• M2serv - 2nd moment of request service time.

The function servtime_mf assumes that the service time has an exponential distribution. A similar
routine, servtime_df, assumes that the service time is deterministic.  Results for general service
time distributions are obtained through interpolation.

We consider the following application. A large scale data center is likely to have multiple  RSLs.
The devices might be acquired to handle data center growth, or multiple small devices might be
less expensive than a single large device. In this section, we discuss an approximation to the
request response time when the request is served by multiple RSLs.

If a request is services by two different RSLs, the request is finished when both devices have
completed their part of the request. Since we assume that requests are independent, we need to
analyze a fork-join queue with interfering traffic. Thomasian and Tantawi [ThTa94,Th96] have
found that a good approximation to the response time of the fork-join job is to take the maximum
of the response times of each device (we assume an Erlang distribution on the response time
when computing order statistics).

For an experiment, we applied the ``large files'' workload to two RSLs, with both receiving the
same arrival rate. We considered a request that required files from six media. In Figure 14, we plot
the response time of this request  against the arrival rate, and varied the number of media that
must be  loaded from each device. The results show that when the load on the tertiary storage
devices is low, it is better to divide the request evenly between the two devices. But, when the
load is high it is better to use one device only. The reason for this result is that splitting the
request between the two devices provides parallel I/O, but if the request load is high, then the
variance in the response times becomes large. Thus, the decision to allocate files so that most
requests use only one device or that most requests use both devices depends on the expected load
placed on the devices.
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Queuing Network Model

A mass storage data system consists of many components in addition to the RSLs.  Typical
hierarchical storage management systems use a database to track file to media location mappings,
and maintain a sizeable staging and caching area. The computing centers that use tertiary storage
often have large scale computing tasks.  For example, EOSDIS archives must perform  product
generation to filter, correct, remap, and fuse satellite images (see the reports in [ESDIS], and also
the discussion in [PMHY95]).

To capture the effects of RSLs in computing systems, we need to integrate the RSL model into a
queuing network model.  The typical approach for incorporating devices with unusual response
time characteristics into a queuing network model is to use mean value analysis (MVA), and
develop a MVA recurrence for the device in question [Ka92]. However, it is difficult to develop
such a recurrence even for multiple server devices.  Therefore, we take the approach of integrating
the open RSL queue into a MVA model.

Although the RSL model  solver is fast (about 2 seconds of execution time), an exact MVA solver
requires an iteration over every possible population vector.  If the population is large and there
are many job classes, solution times become intolerably large. We instead used an approximate
MVA solver, making use of Schweitzer's approximation on queue lengths and Bard's
approximation for the load dependent servers [Ka92]. The approximate MVA solver built using
these approximations compute the throughput at each iteration, which we use as the arrival rate
at the RSL (after scaling by the visit ratio).

The function that solves the queuing network model is closedqn_rsl.  Its prototype is:

int closedqn_rsl( int M,  int K,  double D[MaxM][MaxClass], double* N,
  int* servtype, double alpha[MaxLD][MaxPop], struct rslparamstr* rslparam,
  double visit[MaxM][MaxClass],
     double  lam_out[MaxClass], double  Rloc[MaxM][MaxClass], double* U)

where the input parameters are:

• M - number of servers.
• K - number of classes.
• D - D[k][r] is the service demand of a class r job at server k.
• N - N[r] is the number of customers of class r.
• servtype - servtype[k] encodes server kÕs type, and possibly points to additional

parameters.
• alpha - alpha[l][*] are the service rate multipliers of load dependent server l.
• rslparam - rslparam[l] is a structure containing the service parameters of RSL l.
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• visit - visit[k][r] is the number of times a class r job visits server k.

And the output parameters are:

• lam_out - lam_out[r] is the throughput of class r jobs.
• Rloc - Rloc[k][r] is the residence time of a class r job at server k, per visit.
• U - U[k] is the utilization of server k.

Incorporating an open queuing model into a closed queuing network can introduce inaccuracies
(we implemented some heuristic corrections). To test the accuracy of the approximate MVA
model, we simulated a computer system with a RSL and three other queuing devices.  The
requests to the RSL used the ``large file'' workload, and every customer submits a single request
to the RSL per task execution. There are three queuing devices, with per-task service demands of
250, 400, and 350 units of work, respectively.

We plot the response time of the RSL against the number of customers in the system in Figure 15
for a sleep time of 5000 and 9000. The model is accurate even for a small number of customers.
However, the accuracy declines when the number of customers is large and the sleep time is
small.  This problem is occurring because one of the queuing devices is saturated, and the
approximate MVA solver becomes inaccurate in these situations.

Conclusions

We have developed an analytical model of a robotic storage library and validated the model by
comparison to simulations. The RSL  consists of a storage rack for removable media, a set of
drives that read and write the media, and a robotic arm that transfers the media between the
storage rack and the drives.

The RSL model can be used for many useful studies. We provide examples of data layout and
device selection studies. A RSL is used as a part of a larger computing system.  We incorporated
the RSL solver into an approximate MVA queuing network model, and validated the model by
comparison to a simulation.

We have developed this model to support NASA's EOSDIS on-line archiving efforts.  Future
work will be directed towards refining the model and providing studies useful to archive sites.
This work includes further model refinements, and encapsulating the queuing model solvers into
Java applets that perform particular analyses.
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Varying arrival rate, small files
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Tertiary storage in a QNM
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